
/J L _ -

# .,

Research Institute for Advanced Computer Science
NASA Ames Research Center

On the Dynamics of Some Grid Adaption Schemes

Peter K. Sweby
Helen C. Yee

(NASA-CR-1950o2) ON THE DYNAMICS

O_ SOME GRID ADAPTION SCHEMES

(£es_:_rch Inst. for Advanced

Computer Science) 14 p

N94-24110

Unclas

G3/61 0204026

RIACS Technical Report 94.02
February, 1994

Preprint for Proceedings of the 4th International Conference on Numerical Grid Generation in
Computational Fluid Dynamics and Related Fields, Swansea, UK, April 6-8, 1994.





On the Dynamics of Some Grid Adaption Schemes

Peter K. Sweby
Helen C. Yee

The Research Institute for Advanced Computer Science is operated by Universities Space Research
Association. The American City Building, Suite 212, Columbia. MD 21044 (410) 730-2656

Work reported herein was supported by NASA via Contract NAS 2-13721 between NASA and the
Universities Space Research Association (USRA). Work performed at the Research Institute for Advanced
Computer Science (RIACS), NASA Ames Research Center, Moffett Field, CA 94035-1000





Preprint for Proceedings of the 4th International Conference on Numerical

Grid Generation in Computational Fluid Dynamics and Related Fields,

Swansea, UK, April 6-8, 1994.

ON THE DYNAMICS OF SOME GRID ADAPTION SCHEMES(0

P.K.Sweby (il) and H.C. Yee (ii0

The dynamics of a one-parameter family of mesh equidistribution

schemes coupled with finite difference discretisations of linear and non-

linear convection-diffusion model equations is studied numerically. It is

shown that, when time marched to steady state, the grid adaption not only

influences the stability and convergence rate of the overall scheme, but can

also introduce spurious dynamics to the numerical solution procedure.

1. _TRODUCTION

It has been shown recently by the authors and others (see e.g. [1-4]

and references therein), that the dynamics of the numerical discretisations

of non-linear differential equations (DEs) can differ significantly from that

of the original DEs themselves. For example, the discretisations can pos-

sess spurious numerical steady-state solutions and spurious high order

period solutions (oscillatory behaviour) which may be stable or unstable

(but still affecting the allowable initial data which will converge to the

stable steady-state solutions) and can occur below or above the linearised

stability limit on the time step for the numerical scheme. These studies

are particularly important for computational fluid dynamics (CFD) since

it is common practice to use a time-dependent approach to obtain steady

state numerical solutions of complicated steady fluid flows. References [1-
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41havedemonstrated,usingsimpletest cases,how suchcomputationsmay

converge to incorrect solutions, be non-convergent or suffer from residual

plateauing.

Grid adaption is commonly used in CFD applications to economically

resolve strong gradients and complex shock wave interactions. It is well

known (see e.g. [5]) that some grid adaption techniques for time-dependent

partial differential equations (PDEs) can experience instability, depending

on the methods used in solving these grid adaption equations.

In this paper we apply techniques used in [1-41 to study the dynamics

of grid adaption using the equidistribution principle for time-dependent

approach to steady-state solutions of problems involving steep gradients.

In a parallel study [6] use is made of the AUTO computer bifurcation

package [7] to obtain bifurcation diagrams for similar grid adaption meth-

ods for the steady PDEs. However, the dependence on known solutions

of the discretised PDEs and grid equations as starting values limits its

usage. In the present work we utilise the power of the highly parallel Con-

nection Machine CM-5 to undertake a purely numerical investigation into

the dynamics possible in grid adaption schemes for the time-dependent
PDEs.

Section 2 discusses the equidistribution technique and weight func-

tion used. Section 3 describes the test problems whilst Section 4 presents

selected results and some concluding observations.

2. GRID ADAPTION

One common criterion used for grid adaption is the equidistribu-

tion of a positive defufite weight function w(z, t), often taken to be some

monitor of the numerical solution u(z, t) of the underlying PDE. A grid

Zo < zl(t) < ... < z_v-l(t) < ZN, where Zo and z_v are fixed, equidis-

tributes w(z, t) (at time t) if

, ..,. N J.o

for k = 1,... N. Here we choose a one-parameter family of weight func-
tions

w(z,t)--V/1-a+au2.(z,t ), orE[O, 1], (2)

where a = 1/2 corresponds to equidistribution in the arc-length and a = 0

yields a uniform grid.

If we now approximate w(z, t) to be constant in each interval (zt-x, zh)



we have

(3)
Thus given a numerical solution of the PDE we can approximate the

derivatives by
U/, -- Uh-1

uoI,-,12 _ • (4)
_k -- Zk-i

Equation(3)isnonline_in{,_}using(4).However,(3)islinearin{,_}i_
{zh} in (4) uses the existing grid. In this case we can solve the tridiagonal

system (3) for a new set of {zh} to obtain an updated grid, the modified

solution values on which may be obtained either by interpolation from the

old grid or a convective update to take into account the grid movement.

The majority of our computations employ this linearization of {zk} in (4).

(Note that [6] solves a slightly different form than (3).)

Various strategies are possible using the regriding technique (3). For

example, the grid adaption can be applied after every time step of solving

the PDE or after a prescribed number of time step based on some criteria

of the computed solutions. The {us} can be updated via interpolation

from the old values. If time-marching to the steady-state numerical so-

lution is sought, crude approximations to updating solution values {uh}

immediately following a regriding step may be made. For example inter-

polation from the old grid can be used even after large grid movement or

no adjustment of solution values {uh} at all In such cases we let the (u,}

be adjusted by the numerical scheme itself as it converges toward a steady

state.

8. TEST PROBLEMS

The test problems used in this study are linear and non-linear forms

of the convection-diffusion equation

_, + f(u). = _.. (5)

1u 2 respectively. We impose boundary condi-with f(u)= u and f(u)=

tions u(0, t) = 0 and u(1, t) = 1 for the linear case and u(0, t) = 1 and

u(1, t) = -1 for the non-linear case which result in steady-state solutions

of a boundary layer at z = 1 and a viscous shock at z = 1/2 respectively.

In both cases the steepness of the feature is governed by the parameter e.

We use a method of lines approach to solve the PDE with central

spatial differencing for the diffusion term and either upwind or central

differencing for the convective term. The resulting system of ordinary



differential equations (ODEs) for du_/dt is then solved using a standard

numerical method for ODEs. We have experimented with various explicit

methods, such as forward Euler, second and fourth order Runge-Kutta, as

well as the linearised implicit (backward) Euler method. As expected the

stable time step required for the explicit methods was orders of magnitude

lower than that for the implicit method and so we concentrated on this

latter method of solution in this paper. Note also that unlike the stan-

dard explicit Runge-Kutta methods (i.e. all but forward Euler), linearised

implicit Euler cannot introduce spurious steady states. However, it can

stabilise genuine unstable steady states of the system; see for example

[2]. Note that for this scheme and the linear problem, any non-linearity

present is due solely to the grid adaption.

The regriding strategy adopted was to regrid after every time step of

the PDE method, either interpolating updated solution values from the

old grid or performing no adjustment at all due to grid movement. This

latter approach in effect presents the PDE method with new initial data

to the problem at each step.

We performed many of our calculations on a CM-5 connection ma-

chine at NASA Ames. Its parallel architecture enabled us to easily perform

computations covering a range of selected parameters, usually e, but also

the time step At and the monitor parameter a. We use nodal placement

and the t2 norm of the solution to illustrate our results. In all of the

computation on the CM-5, we use the previous time step value for zs in

(4) to achieve a Linear tridiagonal system for the updated grid in (3).

For the majority of the results, 19 free (interior) nodes were used.

Numerical experiments indicate that there is no major difference in quality
of the results with either an odd or an even number of nodes. We divide

a chosen parameter space (e.g., e) into 512 equal intervals with the rest of

parameters (a, At, initial data) fixed. For each chosen parameter value, we

iterate the discretised PDE and the grid function 4,000 steps (8,000 steps

for the explicit methods) to allow the solution to settle to an asymptotic

state. Then, we perform a series of time step/regriding stages, during

which we investigate the dynamics by producing an overlaid plot of the

norms at each step, resulting in a bifurcation type diagram.

To examine the effect of grid adaption alone compared with the time-

dependent approach to the steady states with regriding above, we also

solve the regriding equations (3) and (4) iteratively using the analytic

solutions of the PDE (5), starting from a uniform grid. We also used a

quadrature based equidistribution applied to (1), namely the trapezium



rulewith a largenumber of subdivisions,to obtain the "exact" placements

of the grid nodes for the analyticalsteady-statesolution.

Due to a page limitation,detailsof the formulas, procedures and

extended resultson the above willbe reported in an extended version of

thispaper. The followingsummarized a small portion of the resultsusing

centraldifferencefor the convection and diffusionterms and the linearized

implicitEuler method.

4. RESULTS

Although resultsfor various values of a were computed, we focus on

only a few of those obtained using a = 1/2, but willremark on results

obtained with other values towards the end of thissection.

4.1 The Linear Problem.

Figure 1 shows the nodal position for the steady-statesolution ob-

tained using our regriding technique (3) iterativelyon the analytic form

of the solution of the PDE (5). As expected the grid is concentrated

around z = 1 for small • due to the very steep gradients of the solution

there. These resultsagree with the "exact" nodal placements obtained

by the freequadrature equidistributionmentioned in the previous section.

The figureshows a settledsolution,which took between 100 iterationsfor

the smallest value • and 10 iterationsfor the largest.It isinterestingto

note that a staircaseeffectisobserved on the plotswith iterationsagainst

log10• (figuresnot shown).

Figure 2 shows the corresponding nodal positionswhen the time de-

pendent PDE is solved to steady state using centralspatialdifferences,

with no adjustment to _ui,) after regriding. Unless we state otherwise

the nodal position plots show the final5 nodal positions for each node,

overlaidon the same plot. In thisparticularcase itcan be seen that for

• > 10-2"sthe grid has settled,whilst for lower values of e thisisnot the

case. Notice the jump in nodal positions as • is varied through 10-2"4.

This isa phenomenon observed in many of our calculations,although the

particularvalue of •at which thiswould happen varied. Careful examina-

tionnear • = 10-3"ssuggests some slightstructurein the pattern of nodal

positions.This isrevealed more clearlyin Figure 3,a bifurcationdiagram

of the 12 norm of the solution,where a structureresembling a period seven

bifurcationcan be seen. For larger valuesof • the norm of the numerical

solutionagrees with that of the analytic steady state.
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Figure 1: Nodal positions for the exact linear problem using matrix iter-
ation
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Figure 2: Last 5 nodal positions for the linear problem, central dif£erences,
At= 1
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Figure 3: Solution norm for the linear problem, central differences, At : 1

Figure 4 shows the bifurcation diagram for a selected range of At

values. Note that the selected range of At is divided into 512 equal inter-

vals. For each (fixed) At value, a fresh calculation of the discretised PDE

and grid function was performed The correct solution is obtained for both

large and smaU values of At, but additional spurious asymptotes occur for

the range 0.1 < At < 10. In our other work [2] we have found that this

is not un-typical of the linearised implicit Euler scheme used here. The

nodal positions are given in Figure 5 and agree reasonably well, where

they have converged, with other results using the same value of e. It is to

be noted that converged nodal positions are independent of the time step

At of the scheme.

The previous results were produced without adjusting nodal values

between regriding and the subsequent time step iteration (a procedure

which can only be contemplated for situations where a steady state is

sought because the transient behaviour of the solution is unimportant).

Figures 6 and 7 show results for the same parameter values, but where

interpolation using the old grid has been used to adjust the solution values

at each regriding step. As can be seen this has modified the behaviour but

not completely eliminated the problem. Notice in particular how there is

a greater amount of node movement compared to the norm of the solution

than in the previous case. Also note that the range of At affected has
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Figure 5: Last 5 nodal positions for the linear problem, central differences,
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Figure 6: As Figure 4 but using interpolation

shifted.

4.2 The Non-linear Problem.

Figure 8 shows the final 5 sets of nodal positions obtained by apply-

ing the regriding technique iteratively to the analytic steady-state solu-

tion. Here the nodal positions are incorrect for smatl e when compared

with those obtained using quadrature based equidistribution. The correct

positions can be visualised by extrapolating back from those for e : 10 -2.

Notice again the jumps in the nodal positions as e is varied. In the middle

range of e a period two solution can be observed for the centre three nodes.

This is one case where the effect is much more pronounced for an even
number of free nodes.

Much of the dynamics observed in the linear problem can be found in

the non-linear case, although due to its increased severity the features are

often more pronounced and convergence less readily attained. Detailed

results will be reported in an extended version of this paper. To give a

flavor of the dynamics for the nonlinear case, Figure 9, shows an overlaid

plot of the values taken by the numerical solution itself for one set of

parameter values in the range where convergence is not obtained.
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Figure 9: Superposition of last 512 solution profiles for non-linear problem,

central differences, At : 0.01, e : 0.01

4.3 The effect of a.

As mentioned previously we have also carried out calculations with

other values of _ in our weight function (2). A value of a : 0 yields a

uniform gird, whilst a : I is in general unsuitable since strict positivity

of the weight function is lost. This is particularly the case in our test

problems for small e due to the solution gradients being very near zero. For

values other than 1, similar phenomena are encountered as for a : 1/2.

However, the nodes are more tightly clustered around the steep gradients

of the solution for larger a and are more spaced out for lower ,',. Also, for

near 1, convergence becomes harder to obtain. There is an increase in

spurious dynamics of the numerical solutions and nodal values, especially

for the non-linear problem. Figure 10 illustrates some of the behaviour

for the linear problem.

4.4 Concluding Remarks.

We have presented a small selection of results from our preliminary

investigation into the dynamical properties of grid adaption schemes. Fu-

ture research will expand on the present work, and in particular concen-

trate on understanding the complicated dynamical behaviour in the hope
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Figure 10: Dependence on a for the linear problem using interpolation,

central differences, AL : 1, e : 0.01

of mapping out a reliable range of grid weight functions and grid adap-

tion parameters of commonly used numerical schemes in CPD for flows

containing strong gradients.
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